Những câu hỏi liên quan
do linh
Xem chi tiết
Trần Phúc Khang
24 tháng 5 2019 lúc 6:56

\(\left(a+b\right)\left(a+b-1\right)=a^2+b^2\)

=> \(2ab=a+b\)

Mà \(2ab\le\frac{\left(a+b\right)^2}{2}\)

=> \(a+b\ge2\)

Ta có

\(a^4+b^2\ge2a^2b\)

\(b^4+a^2\ge2ab^2\)

Khi đó \(Q\le\frac{1}{2ab\left(a+b\right)}+\frac{1}{2ab\left(a+b\right)}=\frac{2}{\left(a+b\right)^2}\le\frac{2}{2^2}=\frac{1}{2}\)

Vậy \(MaxQ=\frac{1}{2}\)khi a=b=1

Bình luận (0)
thảo Hương
Xem chi tiết
Steolla
2 tháng 9 2017 lúc 12:22

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

Bình luận (0)
Called love
Xem chi tiết
Trà My
27 tháng 5 2017 lúc 10:11

Nhân cả 2 vế với a+b+c 

Chứng minh \(\frac{a}{b}+\frac{b}{a}\ge2\) tương tự với \(\frac{b}{c}+\frac{c}{b};\frac{c}{a}+\frac{a}{c}\)

\(\Leftrightarrow\frac{a}{b}+\frac{b}{a}-2\ge0\Leftrightarrow\frac{a^2-2ab+b^2}{ab}\ge0\Leftrightarrow\frac{\left(a-b\right)^2}{ab}\ge0\)luôn đúng do a;b>0

dễ rồi nhé

Bình luận (0)
Trà My
27 tháng 5 2017 lúc 10:23

b) \(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

\(P=\left(\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=\left(1+1+1\right)-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\)

Áp dụng bđt Cauchy Schwarz dạng Engel (mình nói bđt như vậy,chỗ này bạn cứ nói theo cái bđt đề bài cho đi) ta được: 

\(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{\left(1+1+1\right)^2}{x+1+y+1+z+1}=\frac{9}{4}\)

=>\(P=3-\left(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\right)\le3-\frac{9}{4}=\frac{3}{4}\)

=>Pmax=3/4 <=> x=y=z=1/3

Bình luận (0)
Trà My
27 tháng 5 2017 lúc 10:34

c) Áp dụng bđt Cauchy Schwarz dạng Engel ta được:

\(P=\frac{1}{a^2+2bc}+\frac{1}{b^2+2ac}+\frac{1}{c^2+2ab}\ge\frac{\left(1+1+1\right)^2}{a^2+2ab+b^2+2ac+c^2+2ab}=\frac{9}{\left(a+b+c\right)^2}\)

<=>\(P\ge\frac{9}{\left(a+b+c\right)^2}\ge\frac{9}{1^2}=9\)

Vậy Pmin=9 <=> a=b=c=1/3

Bình luận (0)
tth_new
Xem chi tiết
kudo shinichi
28 tháng 1 2019 lúc 11:17

\(T=\frac{1}{a^2+b^2+3}+\frac{1}{2ab}\)

\(T=\frac{1}{a^2+b^2+3}+\frac{1}{5ab}+\frac{3}{10ab}\)

Ta có: \(\frac{1}{x}+\frac{1}{y}\ge\frac{2}{\sqrt{xy}}\ge\frac{2}{\frac{x+y}{2}}=\frac{4}{x+y}\left(x,y>0\right)\)

          \(2ab\le a^2+b^2\Leftrightarrow4ab\le\left(a^2+b^2+2ab\right)\Leftrightarrow2ab\le\frac{\left(a+b\right)^2}{2}\)

Áp dụng:

\(T\ge\frac{4}{a^2+b^2+3+5ab}+\frac{3}{5.\frac{\left(a+b\right)^2}{2}}\ge\frac{4}{\left(a+b\right)^2+3+1,5.\frac{\left(a+b\right)^2}{2}}+\frac{3}{5.\frac{2^2}{2}}=\frac{4}{2^2+3+1,5.\frac{2^2}{2}}+\frac{3}{5.2}=\frac{4}{10}+\frac{3}{10}=\frac{7}{10}\)Dấu " = " xảy ra \(\Leftrightarrow a=b=1\)( lát giải thích sau )

Bình luận (0)
kudo shinichi
28 tháng 1 2019 lúc 12:25

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}a^2+b^2=2ab\\\frac{1}{a^2+b^2+3}=\frac{1}{5ab}\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(a-b\right)^2=0\\a^2+b^2+3=5ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\\left(a+b\right)^2-2ab+3=5ab\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=b\\4+3=5ab+2ab\end{cases}\Leftrightarrow}\hept{\begin{cases}a=b\\7=7ab\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\ab=1\end{cases}}\Leftrightarrow a=b=1\)

Bổ sung thêm:

\(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)( x,y>0)

Dấu " = '" xảy ra <=> x=y

\(2ab\le a^2+b^2\)

Dấu " = '" xảy ra <=> a=b

Bình luận (0)
Phác Đại Nhân
Xem chi tiết
Linh_Chi_chimte
Xem chi tiết
kudo shinichi
9 tháng 12 2018 lúc 19:16

Áp dụng BĐT AM-GM ta có:

\(A\le\frac{x}{2.\sqrt{x^4.y^2}}+\frac{y}{2.\sqrt{x^2y^4}}=\frac{x}{2.x^2y}+\frac{y}{2.x.y^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{2}{2xy}=1\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=y^4\\x^4=y^2\end{cases}\Leftrightarrow x^2.x^4=y^2.y^4\Leftrightarrow x^6=y^6\Leftrightarrow}x=y=1\left(x,y>0\right)\)

Vậy \(A_{max}=1\Leftrightarrow x=y=1\)

Bình luận (0)
tth_new
10 tháng 12 2018 lúc 9:50

Không biết bài này cô si ngược được không?

Dự đoán xảy ra cực trị tại x = y = 1

Cho x = 1 hoặc y = 1

Khi đó: \(A=\frac{1}{1+y^2}+\frac{1}{1+x^2}\)

Mà \(\frac{1}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)

Tương tự: \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)

Cộng theo vế hai BĐT: \(A\ge\left(1+1\right)-\left(\frac{x}{2}+\frac{y}{2}\right)\)\(\ge2-\left(\frac{1}{2}+\frac{1}{2}\right)=1\)

Bình luận (0)
tth_new
10 tháng 12 2018 lúc 9:51

Nhầm r,đề bảo tìm gtln mình lại đi tìm gtnn :v

Bình luận (0)
Lê Song Phương
Xem chi tiết
Xyz OLM
7 tháng 2 2022 lúc 18:25

b) Ta có \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+z\right)^2}{y+z+z+x+x+y}\)(BĐT Schwarz) 

\(=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\frac{x^2}{y+z}=\frac{y^2}{z+x}=\frac{z^2}{x+y}\\x+y+z=2\end{cases}}\Leftrightarrow x=y=z=\frac{2}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Xyz OLM
7 tháng 2 2022 lúc 18:32

a) Có \(P=1.\sqrt{2x+yz}+1.\sqrt{2y+xz}+1.\sqrt{2z+xy}\)

\(\le\sqrt{\left(1^2+1^2+1^2\right)\left(2x+yz+2y+xz+2z+xy\right)}\)(BĐT Bunyakovsky) 

\(=\sqrt{3.\left[2\left(x+y+z\right)+xy+yz+zx\right]}\)

\(\le\sqrt{3\left[4+\frac{\left(x+y+z\right)^2}{3}\right]}=\sqrt{3\left(4+\frac{4}{3}\right)}=4\)

Dấu "=" xảy ra <=> x = y = z = 2/3 

Bình luận (0)
 Khách vãng lai đã xóa
Phan Nghĩa
Xem chi tiết
Nguyễn Ngọc Minh Hương
Xem chi tiết